
Computer Networks 252 (2024) 110675

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

LESS-ON: Load-aware edge server shutdown for energy saving in cellular
networks
Blas Gómez a,∗, Suzan Bayhan b, Estefanía Coronado a,c, José Villalón a, Antonio Garrido a

a High-Performance Networks and Architectures, Universidad de Castilla-La Mancha, Albacete, Spain
b Faculty of EEMCS, University of Twente, Enschede, The Netherlands
c I2CAT Foundation, Barcelona, Spain

A R T I C L E I N F O

Keywords:
Edge computing
Energy efficiency
5G
Wireless networks
Sustainable communications

A B S T R A C T

While advances in wireless networks enable novel services with previously unreachable latency guarantees,
edge computing becomes essential for delivering computing resources close to the users and meeting the
strict latency requirements. However, addressing the energy footprint of computing resources is crucial amid
the pressing sustainability concerns. The energy consumption of idle resources accounts for a significant
part of the total energy footprint. While server shutdown during low-demand periods is common in cloud
computing, it is challenging to determine which edge servers to shut down and how to route requests due
to the stringent latency requirements of the applications. Thus, this work formulates an optimal orchestration
policy to minimize the energy consumption of the edge computing infrastructure and presents LESS-ON, a
strategy with a polynomial time complexity that reduces the operational energy footprint of edge computing by
shutting down edge servers during low-demand periods. In contrast to previous studies, LESS-ON considers the
energy requirements associated with routing requests to the designated edge servers. Our numerical evaluation
shows that LESS-ON reduces the total consumption by 42% with respect to the common always-on approach
during low-demand periods and by 35% over 24 h, all while meeting latency requirements.
1. Introduction

Recent advances in wireless networks supporting low latency, high
connection density, and multi-Gbps data rates have the potential to
greatly enhance the user experience by enabling MNOs and third
parties to offer innovative applications with strict latency requirements
that previous generation networks were unable to meet [1]. Examples
of such applications include vehicular safety and medical robotics. In
this evolving landscape, edge computing is key to building smarter dig-
ital infrastructures. By bringing computational resources closer to the
user, it enables more responsive applications, improves data processing
efficiency, and reduces latency. However, this involves the deployment
of numerous edge servers in the Radio Access Network (RAN) with
the associated increase in the energy demands of the infrastructure.
In a context in which global warming and the energy crisis have
raised significant concerns regarding the energy consumption of com-
munication and computing infrastructures [2–5], addressing the energy
consumption of edge computing becomes paramount.

The energy consumption of computing systems has attracted sig-
nificant attention, especially in cloud computing [6–10]. Prior works

∗ Corresponding author.
E-mail address: blas.gomez@uclm.es (B. Gómez).

have shown significant energy savings by shutting down servers during
low-demand periods, as a substantial portion of their energy use cor-
responds to their idle state [11]. Resources in a cloud data center are
scaled to meet demand during peak hours, leaving plenty of resources
idle in off-peak hours. However, thanks to their centralized nature
and their abstraction as a single server, resources can easily be scaled
up and down by transparently shutting down servers during off-peak
hours. Similarly, edge computing involves the deployment of numerous
servers with their capacity scaled to meet peak-hour demand. Yet,
unlike cloud computing, server shutdown strategies have received less
attention in edge computing. Due to its ultra-low latency requirements
and distributed nature, not all edge servers are potential candidates
to handle a request uploaded to the RAN by a user connected to
a specific BS. To shut an edge server down, other servers must be
reachable within the maximum delay of the services. Moreover, those
servers must have enough capacity available to host the extra load. Yet,
there is limited research on strategies to route requests to other edge
servers aiming to shut down idle ones. For this reason, edge servers
always stay on and are ready to receive user requests to ensure that the
https://doi.org/10.1016/j.comnet.2024.110675
Received 16 November 2023; Received in revised form 13 June 2024; Accepted 25
vailable online 27 July 2024
389-1286/© 2024 The Author (s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
July 2024

ticle under the CC BY-NC-ND license (http ://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:blas.gomez@uclm.es
https://doi.org/10.1016/j.comnet.2024.110675
https://doi.org/10.1016/j.comnet.2024.110675
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110675&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Gómez et al. Computer Networks 252 (2024) 110675
ultra-low latency requirements are fulfilled, especially as the routing of
5G networks with integrated edge deployments rely on these servers
for user plane routing [12]. Consequently, a considerable fraction of
resources remain idle during off-peak hours. Thus, introducing server
shutdown strategies can have a considerable impact in reducing the en-
ergy footprint of computing infrastructure as a whole. The distributed
nature of edge computing involves the deployment of edge servers
across thousands of locations to cover extensive geographical areas, as
the proximity between users and computing resources is critical. Thus,
addressing the energy consumption of edge computing’s idle servers
becomes paramount.

Studies such as [13,14] have explored the possibility of shutting
down edge servers, but an assessment of its impact on Quality of
Service (QoS) and especially application deadline satisfaction has yet to
be carried out. Moreover, these studies overlook the energy consump-
tion of routing requests through backhaul links from offline servers to
active ones. Thus, to effectively apply server shutdown strategies to the
edge, there is a need for a comprehensive strategy that routes user re-
quests to the lowest possible number of servers to minimize the energy
consumption of the edge computing infrastructure, considering both
edge servers and backhaul links, while satisfying QoS requirements.

To address this, this paper presents LESS-ON, an orchestration
framework that reduces the energy consumption of a cellular network’s
co-located edge computing infrastructure by selectively shutting down
edge servers while ensuring that the remaining active servers meet
the application’s computing demands and delay bounds. LESS-ON shuts
down servers by routing requests to the smallest set of servers possible,
accounting for the delays that the requests will experience on the path
from the source BS toward the selected active edge server and during
computation as well as the energy consumption of this transmission.
LESS-ON ensures that the maximum delay experienced by a request is
below the tolerable delay of that service. LESS-ON also considers the
energy consumption caused by the booting of previously inactive edge
servers. In summary, our contributions are threefold:

i. To the best of our knowledge, LESS-ON is the first edge server
shutdown strategy that considers the energy consumption re-
lated to routing requests and optimizes the assignment and
routing of computing requests from their source cells to edge
servers, taking into account the available capacity of the servers
and the backhaul links.

ii. We formulate the optimal orchestration policy for energy con-
sumption minimization, and then, we design an efficient heuris-
tic with polynomial time complexity to solve the formulated
problem. We solve the minimization problem using Gurobi opti-
mization software and compare our heuristic’s performance with
the optimal solution.

iii. We use MintEDGE [15], our in-house edge computing simulator,
to evaluate the performance of LESS-ON in terms of energy
savings and deadline satisfaction. MintEDGE is released under
a permissive MIT license. We leverage real data from an MNO
in the Netherlands using two other strategies as a benchmark,
namely Always-on (where edge servers are constantly active)
and Threshold (where servers are shut down when their load
is below a threshold as presented in [13]). We also study the
impact of the number of deployed edge servers to evaluate
the effect of various utilization levels in the infrastructure on
deadline satisfaction and the energy-saving potential.

The rest of the paper is organized as follows. Section 2 reviews the
related work, while Section 3 presents the system model. Section 4
describes the problem formulation and Section 5 introduces our ap-
proach to solving it. Section 6 presents and discusses the performance
evaluation results. Finally, Section 7 concludes the paper and includes
a list of future work.
2
2. Related work

The sustainability of computing infrastructure has been in the focus
of recent research. Prior studies on cloud computing [2–5] highlight
the benefits of edge computing in reducing WAN traffic and the role
of backhaul transmissions in energy usage. Moreover, shutting down
network devices during low-demand periods emerges as a promising
energy-saving approach. However, these works also acknowledge that
implementing such strategies in the realm of strict latency requirements
presents new challenges.

In view of these challenges, a considerable body of literature presents
new request routing and resource management strategies to reduce
the energy consumption of edge computing architectures. In [16], the
authors jointly consider the routing of requests from users to edge
servers and the server resource allocation to minimize the energy
consumption of the edge servers. However, unlike LESS-ON, their
work does not consider shutting down edge servers or the energy
consumption of the backhaul. The authors of [17] present another
resource allocation strategy to minimize energy consumption. Their
strategy jointly considers the energy of computing and communication
of Virtual Machines (VMs) running in an edge infrastructure operating
under hard delay constraints. However, while LESS-ON focuses on
reducing the system’s energy consumption by eliminating the idle
consumption of unused edge servers, their work does not consider this
consumption and never turns edge servers off. In [18], the authors
study service placement and resource allocation in an edge environ-
ment with different actors with competing interests, such as service
providers, application providers, or network providers. However, while
their work has a positive impact on energy consumption, they address
neither routing nor idle energy consumption.

In [19] a resource allocation strategy that considers clusters of edge
servers is presented. In this strategy, the cluster head is in charge of
routing requests to the appropriate edge server to minimize energy
consumption by leveraging Dynamic Voltage Frequency Scaling (DVFS)
CPUs to save energy while maintaining delay levels. However, similar
to previous work, edge servers are never shut down. This strategy does
not consider the backhaul energy consumption, and the resulting delays
are in the order of hundreds of milliseconds, which are too high for
many of the ultra-low latency edge use cases [20]. In contrast, LESS-ON
targets both the idle energy consumption of edge servers and the
energy resulting from routing requests through the backhaul. Moreover,
contrary to [19], LESS-ON is hardware-agnostic. Another approach that
requires specific hardware is presented in [21]. This strategy assumes
that each edge server has multiple CPUs that can be independently
powered off based on different thresholds. This method maximizes
idle servers and relies on specialized hardware to minimize idle en-
ergy consumption. However, while this partially alleviates idle energy
consumption, the servers are never completely off; therefore, there
is still potential to reduce the energy consumption further. LESS-ON
explores this potential by fully shutting them down, eliminating idle
energy consumption. In [22], the authors propose a location-based load
prediction algorithm that uses historical edge server data. While the
authors acknowledge the potential benefits of using this algorithm in
server shutdown strategies, they do not explore the benefits mentioned.
Instead, they focus on evaluating the prediction strategy employed.

While the previous works present resource allocation and routing
strategies aimed at reducing energy consumption, none addresses idle
resource consumption. With capacity scaled to meet the demands of
peak hours, there is potential for further improvements if this energy
consumption is eliminated. To the best of our knowledge, this issue
is only addressed by the following two studies. The approach in [13]
puts edge servers to sleep when the load drops below 10% threshold.
However, it overlooks the energy consumption of the backhaul needed
to route incoming requests to active servers, which may outweigh the
savings achieved by server shutdown [2]. Furthermore, they do not

assess the impact on latency-constrained services. In contrast, LESS-ON

B. Gómez et al. Computer Networks 252 (2024) 110675
Fig. 1. A cellular network with edge servers. The orchestrator determines how to route
the requests to the assigned edge servers and which servers to shut down to minimize
the network’s energy consumption.

balances the energy saved by server shutdown with the energy used
for backhaul routing to active servers. Moreover, LESS-ON considers
the strict delay requirements of applications by accounting for the
routing and computing time of requests in the new servers before the
shutdown decisions. We study the impact of LESS-ON on maximum
delay fulfillment. The authors of [14] propose a server shutdown
strategy aimed at minimizing costs instead of energy. Their study
assumes fixed running costs and shows latencies that are unsuitable
for latency-constrained use cases such as vehicular safety. In contrast,
our approach focuses specifically on applications with strict delay
requirements. Moreover, LESS-ON considers an architecture that places
edge servers closer to the user, and our evaluation models energy
consumption dynamically.

Shutdown or sleep strategies have been studied in other areas of
research, including BSs and cloud servers as shown by the consider-
able body of literature [23,24]. Within BSs, shutdown strategies for
heterogeneous networks have attracted considerable attention [25–
28]. The authors in [25] formulate a minimization problem of the
energy consumption of the RAN in a heterogeneous network by putting
Small Base Stations (SBSs) to sleep or turning them off when their
traffic can be served by neighboring SBSs. They solve the optimiza-
tion problem using two metaheuristics: Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). In [26], the authors also rely on a
heterogeneous network to decouple control and data communication.
They also put to sleep or turn off SBSs according to a vacation time
predicted to minimize the energy consumption of the RAN. The authors
of [27] present another method for saving energy by turning off SBSs
using graph theory. In [28], the authors consider the same network
architecture using BSs and present two algorithms that put the SBSs
with the lowest load to sleep during random periods considering that
each User Equipment (UE) has more than one SBS in range. Cloud
server shutdown strategies have also been explored in the research
literature [29,30]. For instance, the authors of [29] present a cloud
server shutdown strategy based on thermal management and server
utilization. Similarly, the authors of [30] present a Dynamic Round-
Robin algorithm to consolidate VMs in the smallest number of servers
to shut down the idle ones.

3. System model

This section presents the system model considered in this work and
its components, as illustrated in Fig. 1.

Communication network: We consider a 5G RAN comprising a
finite set of BSs, denoted by = {𝐵𝑆1,… , 𝐵𝑆𝑁}. The BSs are intercon-
nected with each other and with the management plane via a backhaul
network represented by a given set of links . We denote the connectiv-
ity graph as = ⟨,⟩. Each link 𝓁 is characterized by its source and
𝑖,𝑗

3
destination BS together with its associated capacity, denoted by 𝛼𝑖,𝑗 .
Hence, we represent each link as a three tuple: 𝓁𝑖,𝑗 = ⟨𝐵𝑆𝑖, 𝐵𝑆𝑗 , 𝛼𝑖,𝑗⟩.
We assume that the capacity of the links is equal in both directions. For
the sake of simplicity, we assume a fixed routing algorithm, denoting
the associated routing matrix by 𝛤 . Any pair of BSs can communicate
with each other through multiple hops according to the shortest path
in 𝛤 . In this work, we will refer to the BS that a user is connected to as
serving BS. This generic representation of the RAN results in a RAN-
agnostic approach that facilitates broad applicability across diverse
network architectures, offering greater flexibility and future-proofing,
as it can be seamlessly adapted to evolving network architectures. This
work focuses on the edge infrastructure and its resource management,
independent of the underlying specific RAN architecture.

Edge computing infrastructure: The cellular network incorporates
a co-located edge server deployment, as shown in Fig. 1. We denote the
set of edge servers as . Without loss of generality, we assume that each
edge server is associated with a BS. Because an MNO can choose not
to deploy edge servers at every BS, we indicate whether a particular
𝐵𝑆𝑖 hosts an edge server with binary variable 𝑒𝑖, where 𝑒𝑖 = 1 if 𝐵𝑆𝑖
hosts an edge server and 𝑒𝑖 = 0 otherwise. We assume each edge server
ℎ𝑚 ∈ can host a finite set A of computation services. We denote
the computing capacity of ℎ𝑚 by 𝐶𝑚𝑎𝑥

𝑚 in operations per second.1 The
system also includes a set U of UEs. Any 𝑢𝑙 ∈ U can access services
on any edge server ℎ𝑚 using its BS and the corresponding backhaul
links. The edge server at 𝐵𝑆𝑖 is denoted as ℎ𝑖, and can be represented
by the tuple ⟨𝐵𝑆𝑖, 𝐶𝑚𝑎𝑥

𝑖 ⟩. Edge servers can be shut down and booted
as needed for energy-saving purposes. The booting process incurs a
setup time, denoted by 𝑇 𝑠

𝑖 , during which the edge servers cannot handle
computing requests. Consequently, the orchestrator must consider 𝑇 𝑠

𝑖
before seeing ℎ𝑖 as eligible to attend computing requests. In this work,
we will refer to the edge server receiving a request as the serving or
target edge server. The serving edge server can be hosted on a different
BS to the serving BS.

Computing requests: We define the set of all computing services as
, which consists of various tasks such as risk detection in connected
vehicles and augmented reality. The computing services are placed in
the network edge, and UEs access these services to execute their tasks.
Following the state of the art [31,32], we represent each computing
request by a four-tuple: ⟨𝑜𝑘, 𝑉 𝑖𝑛

𝑘 , 𝑉 𝑜𝑢𝑡
𝑘 , 𝑇𝑚𝑎𝑥

𝑘 ⟩, where 𝑜𝑘 represents the
workload, 𝑉 𝑖𝑛

𝑘 indicates the input size in bytes, 𝑉 𝑜𝑢𝑡
𝑘 denotes the size

of the computation output, and 𝑇 𝑚𝑎𝑥
𝑘 specifies the delay budget of the

task. A request made to 𝑎𝑘 ∈ results in a computing workload of
𝑜𝑘 operations required to complete the task. The specific value of 𝑜𝑘
depends on the nature of the service. Assuming that requests for a
particular service 𝑎𝑘 have an arrival rate at 𝐵𝑆𝑖 of 𝜆𝑖,𝑘, the resulting
workload caused by 𝑎𝑘 per unit of time is given by 𝑜𝑘𝜆𝑖,𝑘. The arrival
rate is influenced by factors such as the number of users and service
characteristics. An edge server located at 𝐵𝑆𝑖 might serve computing
requests originating from other BSs, e.g., a BS without an edge server
or whose edge server is off. We assume that the computing capacity of
ℎ𝑖 is divided among the hosted services proportionally to the number of
operations to be executed by each one [33]. If the orchestrator cannot
find the free capacity to attend to all the requests, they are rejected
in a First In First Out (FIFO) manner. We assume requests are either
attended on the edge or rejected and computed locally by the user. We
do not consider rerouting them to the cloud as we consider latency-
sensitive services that require real-time processing. Each computing
request is also identified by the volumes of the input (𝑉 𝑖𝑛

𝑘) and the
computation output (𝑉 𝑜𝑢𝑡

𝑘) data. As requests might be associated with
delay-sensitive tasks, we denote the delay budget for 𝑎𝑘 by 𝑇 𝑚𝑎𝑥

𝑘 .

1 This work focuses on real-time applications that are more CPU-intensive
than storage-intensive. For this reason, we have assumed that all services can
be hosted on all servers regardless of the storage capabilities.

B. Gómez et al. Computer Networks 252 (2024) 110675
Table 1
Summary of key notation.

Symbol Definition

, 𝑁 The set of BSs and the number of BSs
 The set of links connecting BSs
 BS connectivity graph
𝓁𝑖,𝑗 The link connecting 𝐵𝑆𝑖 and 𝐵𝑆𝑗
𝛼𝑖,𝑗 The capacity of the link connecting 𝐵𝑆𝑖 and 𝐵𝑆𝑗
𝛤 Routing Matrix
, ℎ𝑚 The set of edge servers and a server in
𝑒𝑖 Variable marking the presence of an edge server at 𝐵𝑆𝑖
, 𝑎𝑘 The set of services and a service in
𝐶𝑚𝑎𝑥
𝑚 The maximum capacity of ℎ𝑚 in operations per second

𝑂𝑚 Total workload of ℎ𝑚
𝑜𝑘 Workload in operations of a request to 𝑎𝑘
𝑉 𝑖𝑛
𝑘 Size of the input for a request to 𝑎𝑘

𝑉 𝑜𝑢𝑡
𝑘 Size of the output for a request made to 𝑎𝑘

𝑇 𝑚𝑎𝑥
𝑘 The delay budget for a request made to 𝑎𝑘

𝜆𝑖,𝑘 Arrival rate of requests from 𝐵𝑆𝑖 to service 𝑎𝑘
𝛾𝑖,𝑘,𝑗 Fraction of requests for 𝑎𝑘 routed from 𝐵𝑆𝑖 to ℎ𝑗
𝜂𝑖 Status (on/off) of edge server ℎ𝑖 ∈
𝛽𝑘,𝑗 Fraction of CPU allocated for service 𝑎𝑘 at ℎ𝑗
𝑝𝑜,𝑝𝑖,𝑗 Variable marking if 𝓁𝑜,𝑝 is in the path from 𝐵𝑆𝑖 to 𝐵𝑆𝑗

𝑇 𝑐
𝑖,𝑘 Time required to compute a response to a request

𝑇 𝑢
𝑖,𝑘 Time to upload a request in the RAN

𝑇 𝑟
𝑖,𝑘 Time to route requests through the backaul

𝑇 𝑜
𝑖,𝑘 Time to route back the output of the computation

𝑇 𝑑
𝑖,𝑘 Time to download the output from the serving BS

𝐸𝑖𝑑𝑙𝑒
𝑚 Idle energy consumption of ℎ𝑚

𝐸𝑚 Energy consumed by operation executed in ℎ𝑚
𝜎𝑜,𝑝 Energy consumed per bit transmitted by 𝓁𝑜,𝑝 ∈
𝑇 𝑠
𝑚 Time necessary to turn on ℎ𝑚

𝐸𝑏𝑜𝑜𝑡
𝑚 Energy consumed to boot ℎ𝑚 ∈

The delay budget indicates the time before a request’s result must be
delivered to the submitting user.2

Operation of the edge orchestrator: The edge computing infras-
tructure is managed by an orchestrator located at the Service Manage-
ment and Orchestration (SMO) layer, which also encloses the govern-
ment of the RAN and the transport network.3 It periodically gathers
information from the RAN and the edge servers, including latency and
utilization metrics. It is also in charge of managing the capacity of
the edge servers and selecting the appropriate one for the deployment,
relocation, or termination of services. To optimize energy consumption,
the orchestrator can dynamically shut down edge servers as needed.
When the edge server ℎ𝑖 associated with 𝐵𝑆𝑖 is shut down, computing
requests received by 𝐵𝑆𝑖 are reassigned to another active edge server
ℎ𝑗 . The selection of the appropriate active edge server is based on
factors such as link capacities and the available capacity of the active
edge servers, as shown in Fig. 2.

At a given time, the orchestrator decides on the configuration of
the infrastructure to minimize the energy footprint while meeting the
latency constraints of the computing requests and resource constraints
of the links and the edge servers. The decision is communicated to
the infrastructure so that it can operate according to the planned
orchestration in the next time slot.

4. Problem formulation

To ensure the timely completion of computing requests, we use edge
server capacities and routing delays to calculate service completion
time and assign requests to specific edge servers. Our work aims to
minimize the energy footprint by assigning requests to suitable edge
servers and potentially shutting down selected servers while meeting

2 We implicitly assume that the result is delivered to the same user
submitting the request. Other patterns, such as one-to-many, can also be
considered. However, we focus on this model for the sake of simplicity.

3 Federation across MNOs is beyond the scope of this work.
4
Fig. 2. Requests are forwarded to active edge servers based on link capacities and
server locations. The computation results are delivered back to the user through the
same path. In this example, since the edge server hosted at 𝐵𝑆𝑖 is off, requests are
forwarded to either 𝐵𝑆𝑙 or to 𝐵𝑆𝑗 with active servers.

delay requirements. This section introduces our system’s latency and
capacity constraints and presents the energy consumption model. A list
of key notations is provided in Table 1.

At a given time, the orchestrator can decide on the following
parameters to optimize the QoS or save energy:

• Fraction of requests for 𝑎𝑘 received by 𝐵𝑆𝑖 to be computed by an
edge server ℎ𝑗 , as illustrated in Fig. 2. We denote this fraction by
𝛾𝑖,𝑘,𝑗 ∈ [0, 1].

• Status of each edge server denoted by 𝜂𝑖 ∈ {0, 1}, where 𝜂𝑖 = 0 means
that ℎ𝑖 is off.

• Fraction of computing capacity allocated for 𝑎𝑘 at ℎ𝑗 . We denote this
fraction by 𝛽𝑘,𝑗 ∈ [0, 1].

Computing capacity constraints: These constraints express both
the requests’ need for computing resources and the capacity limitations
of the edge servers. With the said orchestrator settings, if ℎ𝑗 receives
a fraction 𝛾𝑖,𝑘,𝑗 of computing requests for 𝑎𝑘 from 𝐵𝑆𝑖 (see example
in Fig. 2), the total number of operations per second needed to be
completed by service 𝑎𝑘 at ℎ𝑗 is given by:

𝑂𝑘,𝑗 =
∑

𝐵𝑆𝑖∈
𝛾𝑖,𝑘,𝑗𝑜𝑘𝜆𝑖,𝑘 ∀𝑎𝑘 ∈ . (1)

Consequently, considering all services, we can calculate the total com-
puting load at ℎ𝑗 as:

𝑂𝑗 =
∑

𝑎𝑘∈
𝑂𝑘,𝑗 ∀𝑎𝑘 ∈ . (2)

To guarantee that the computing capacity of ℎ𝑗 is not exceeded, the
orchestrator must ensure that the total workload assigned to ℎ𝑗 is less
than or equal to its capacity. This constraint can be expressed formally
as follows:

𝑂𝑗 ≤ 𝐶𝑚𝑎𝑥
𝑗 ∀𝐵𝑆𝑗 ∈ . (3)

To serve all incoming requests, ℎ𝑗 assigns a fraction 𝛽𝑘,𝑗 of the total
capacity 𝐶𝑚𝑎𝑥

𝑗 to service 𝑎𝑘. We assume that 𝛽𝑘,𝑗 is proportional to the
total workload of each service with respect to the total capacity 𝐶𝑚𝑎𝑥

𝑗 of
ℎ𝑗 . Thus, to avoid internal queuing on the CPU, the following constraint
must be satisfied:

𝛽𝑘,𝑗 ≥
∑

𝐵𝑆𝑖∈

𝛾𝑖,𝑘,𝑗𝑜𝑘𝜆𝑖,𝑘
𝑂𝑗

, ∀ℎ𝑗 ∈ ,∀𝑎𝑘 ∈ . (4)

Link capacity constraints: To respect the limited capacity of each link
𝓁𝑖,𝑗 , the orchestrator must consider the data size of a computing request
and the routing path from the serving BS to the target edge server. We
define a binary variable 𝑝𝑜,𝑝 which yields 1 if 𝓁 is part of the shortest
𝑖,𝑗 𝑜,𝑝

B. Gómez et al.

a
a

𝑎

t
t
e

b
𝑇

𝑇

4

n

v

m
s
b

Computer Networks 252 (2024) 110675
path between 𝐵𝑆𝑖 and 𝐵𝑆𝑗 , and 0 otherwise. For each link 𝓁𝑜,𝑝 with
capacity 𝛼𝑜,𝑝, the following capacity constraint must be satisfied to

void long transmission delays:
∑

𝑘∈

∑

𝐵𝑆𝑖∈

∑

𝐵𝑆𝑗∈
𝑉 𝑖𝑛
𝑘 𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑗𝑝

𝑜,𝑝
𝑖,𝑗 ⩽ 𝛼𝑜,𝑝 ∀𝓁𝑜,𝑝 ∈ . (5)

Delay budget constraints: Each service has a specific deadline 𝑇 𝑚𝑎𝑥
𝑘

hat must be met after a request is submitted. The orchestrator needs
o assign resources so the delay experienced is below 𝑇 𝑚𝑎𝑥

𝑘 . The delay
xperienced consists of:

(i) time to upload a request and the associated data to the serving
BS (𝑇 𝑢);

(ii) time to route this request toward the serving edge server (𝑇 𝑟);
(iii) time required to compute the response (𝑇 𝑐);
(iv) time to route back the output (𝑇 𝑜); and
(v) time to download the output from the serving BS (𝑇 𝑑).

When the serving BS also hosts the serving edge server, 𝑇 𝑟 is 0. Since
the output data is significantly smaller than the input, we assume
a constant delay for 𝑇 𝑜 and 𝑇 𝑑 and focus on the first three delay
components:

• 𝑇 𝑢: Given the datarate 𝑅𝑖 of the radio link at 𝐵𝑆𝑖 that can be obtained
with Shannon–Hartley’s theorem, 𝑇 𝑢

𝑖,𝑘 is given by:

𝑇 𝑢
𝑖,𝑘 =

𝑉 𝑖𝑛
𝑘
𝑅𝑖

[seconds]. (6)

• 𝑇 𝑟: The time to route a request for a service 𝑎𝑘 from the serving 𝐵𝑆𝑖
to the target edge server ℎ𝑗 through 𝓁𝑜,𝑝 depends on the link capacity
𝛼𝑜,𝑝 and the size of the input 𝑉 𝑖𝑛

𝑘 . For a request routed from 𝐵𝑆𝑖 to
𝐵𝑆𝑗 , we can calculate the backhaul latency as the sum of the delays
of all the links along the path.4 More formally, we compute the total
delay of this path as follows:

𝑇 𝑟
𝑖,𝑘,𝑗 =

∑

𝓁𝑖,𝑗∈

𝑉 𝑖𝑛
𝑘 𝑝𝑜,𝑝𝑖,𝑗
𝛼𝑜,𝑝

. (7)

Since requests for 𝑎𝑘 can take different paths and be executed on
different edge servers (𝛾𝑖,𝑘,𝑗 > 0 for several ℎ𝑗), the orchestrator needs
to ensure that the path with the maximum latency is below the delay
budget. We can represent this as follows:

𝑇 𝑟
𝑖,𝑘 = max

𝓁𝑖,𝑗
𝑇 𝑟
𝑖,𝑘,𝑗 ∀𝐵𝑆𝑗 where 𝛾𝑖,𝑘,𝑗 ⩾ 0. (8)

• 𝑇 𝑐 : The computing time required to process a request made for service
𝑎𝑘 depends on the fraction 𝛽𝑘,𝑗 of computing capacity assigned to that
service at edge server ℎ𝑗 and the total server capacity 𝐶𝑚𝑎𝑥

𝑗 . Since
requests for service 𝑎𝑘 can be computed on different edge servers,
the computing delay for 𝑎𝑘 is given by the maximum delay observed
among all the edge servers. Therefore, the execution time is given by:

𝑇 𝑐
𝑖,𝑘 = max

ℎ𝑗

(

𝜂𝑗
𝑜𝑘

𝛽𝑘,𝑗𝐶𝑚𝑎𝑥
𝑗

)

where 𝛾𝑖,𝑘,𝑗 > 0. (9)

Using the maximum delay for each component provides the upper
ound of the total delay for 𝑎𝑘, which must adhere to its delay budget
𝑚𝑎𝑥
𝑘 , as expressed by:

𝑢
𝑖,𝑘 + 𝑇 𝑟

𝑖,𝑘 + 𝑇 𝑐
𝑖,𝑘 + 𝑇 𝑜

𝑖,𝑘 + 𝑇 𝑑
𝑖,𝑘 ⩽ 𝑇 𝑚𝑎𝑥

𝑘 ∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑖 ∈ . (10)

.1. Energy consumption model

The system’s energy consumption can be divided into three compo-
ents:

4 Requests might experience queuing delays if the capacity constraints are
iolated. We assume node processing and propagation delays to be negligible.
 e

5
(i) energy consumed by edge servers during request execution;
(ii) energy consumed by the backhaul links to route requests to edge

servers hosted at other BSs; and
(iii) energy used in the boot process when an edge server is shut

down and restarted.

We provide further details of these components below.
Edge servers: Any edge server ℎ𝑚 has a capacity of 𝐶𝑚𝑎𝑥

𝑚 operations
per second and a baseline energy consumption 𝐸𝑖𝑑𝑙𝑒

𝑚 when it is idle.
Each operation executed on ℎ𝑚 results in extra energy consumption
in addition to 𝐸𝑖𝑑𝑙𝑒

𝑚 . We denote this energy per operation as 𝐸𝑚. As
mentioned above, each edge server ℎ𝑚 performs a certain number of
operations per second 𝑂𝑚, given by (1). Thus, if we assume a linear
power model [34], the power consumed by the set of active edge
servers is given by:
∑

ℎ𝑚∈
𝜂𝑚

(

𝐸𝑖𝑑𝑙𝑒
𝑚 + 𝑂𝑚𝐸𝑚

)

. (11)

Routing of the computing requests: When the edge server hosted at a
particular BS is off, or the BS does not host an edge server, the requests
need to be routed to another BS’s edge server, resulting in additional
energy consumption. The energy overhead of this communication can
be calculated according to a hardware-specific parameter 𝜎 that denotes
energy consumption for transmitting one bit (typically in J/bit).5 We
denote the per-bit transmission energy for a link 𝓁𝑜,𝑝 by 𝜎𝑜,𝑝. The total
data volume traversing a link can be determined by considering both
the computing request data and its output as follows:

𝑉𝑜,𝑝 =
∑

𝑎𝑘∈

∑

𝐵𝑆𝑖∈

∑

𝐵𝑆𝑗∈

(

𝑉 𝑖𝑛
𝑘 +𝑉 𝑜𝑢𝑡

𝑘
)

𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑗𝑝
𝑜,𝑝
𝑖,𝑗 ∀𝓁𝑜,𝑝 ∈ . (12)

Thus, with the amount of data traversing 𝓁𝑜,𝑝 and its 𝜎𝑜,𝑝 the energy
consumed by the set of links is given by:
∑

𝓁𝑜,𝑝∈
𝜎𝑜,𝑝𝑉𝑜,𝑝. (13)

Boot process: When the orchestrator shuts down an edge server, it
must ensure that the energy saved during the inactive period outweighs
the energy used in the booting process. An inactive edge server ℎ𝑚
takes a certain setup time 𝑇 𝑠

𝑚 until it is ready to serve requests again.
The orchestrator turns the edge servers back on in a timely manner to
avoid the rejection of requests during the booting process. During this
setup time, the power consumption is assumed to have a constant value
𝑃 𝑠
𝑚 [35]. Therefore, the total energy consumed during the edge server

boot process is given by 𝐸𝑏𝑜𝑜𝑡
𝑚 = 𝑇 𝑠

𝑚𝑃
𝑠
𝑚. The booting energy is consumed

only upon state changes and is negligible when the time slot between
state changes is big enough. For this reason, we do not include it in the
formulation of the problem but instead account for it when deciding on
the time period between the orchestrator’s decisions.

4.2. Orchestration for energy consumption minimization

Now, let us formally define our optimization problem, which aims to
minimize the computing infrastructure’s energy consumption without
violating the constraints introduced in the preceding sections. Given the
decision variables 𝛾, 𝜂, and 𝛽, we can state the optimal orchestration
problem as follows:

min
𝛾,𝜂,𝛽

∑

ℎ𝑖∈
𝜂𝑖(𝐸𝑖𝑑𝑙𝑒

𝑖 + 𝑂𝑖𝐸𝑖) +
∑

𝓁𝑜,𝑝∈
𝜎𝑜,𝑝𝑉𝑜,𝑝 (P1)

5 Since detailed energy consumption models for the network equipment are
issing in the literature, we assume the following model considering previous

tudies [34]. More sophisticated models, such as non-linear relationships
etween energy consumption and data volume, can be used to model the
nergy consumption of the backhaul.

B. Gómez et al.

a
c
w
c
a
s

Computer Networks 252 (2024) 110675
subject to:

𝑂𝑗 ≤ 𝐶𝑚𝑎𝑥
𝑗 ∀𝐵𝑆𝑗 ∈ (14)

𝛽𝑘,𝑗 ≥
∑

𝐵𝑆𝑖∈

𝛾𝑖,𝑘,𝑗𝑜𝑘𝜆𝑗,𝑘
𝑂𝑗

∀ℎ𝑗 ∈ ,∀𝑎𝑘 ∈ (15)

∑

𝑎𝑘∈

∑

𝐵𝑆𝑖∈

∑

𝐵𝑆𝑗∈
(𝑉 𝑖𝑛

𝑘 + 𝑉 𝑜𝑢𝑡
𝑘)𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑗𝑝

𝑜,𝑝
𝑖,𝑗 ≤ 𝛼𝑜,𝑝∀𝓁𝑜,𝑝 ∈ (16)

𝑇 𝑢
𝑖,𝑘 + 𝑇 𝑟

𝑖,𝑘 + 𝑇 𝑐
𝑖,𝑘 + 𝑇 𝑜

𝑖,𝑘 + 𝑇 𝑑
𝑖,𝑘 ≤ 𝑇 𝑚𝑎𝑥

𝑘 ∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑖 ∈ (17)

∑

𝑎𝑘∈
𝛽𝑘,𝑗 ≤ 𝜂𝑗 ∀ℎ𝑗 ∈ (18)

∑

𝐵𝑆𝑗∈
𝛾𝑖,𝑘,𝑗 = 1 ∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑖 ∈ (19)

𝛾𝑖,𝑘,𝑗 ≤ 𝜂𝑗 ∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑖 ∈ ,∀ℎ𝑗 ∈ (20)

𝛾𝑖,𝑘,𝑗 ∈ [0, 1] ∀𝐵𝑆𝑖 ∈ ,∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑗 ∈ (21)

𝛽𝑘,𝑗 ∈ [0, 1] ∀𝑎𝑘 ∈ ,∀𝐵𝑆𝑗 ∈ (22)

𝜂𝑖 ∈ {0, 1} ∀ℎ𝑖 ∈ . (23)

The objective function in (P1) minimizes the total energy consump-
tion of edge servers and the communication network. Constraints (14),
(15), (16) and (17) ensure compliance with the capacity and delay
constraints introduced in this section. Constraint (18) indicates that
the sum of all the assigned capacities cannot exceed the total capacity.
Rejecting all requests would yield optimal energy consumption, as all
servers could be shut down. To avoid this, we introduce Constraint (19),
which states that all requests must be routed to an edge server, en-
suring that all requests are attended. We state that an edge server
that is off (𝜂𝑗 = 0) cannot receive requests with Constraint (20). Con-
straints (21), (22), and (23) define the domain of the decision variables.

Eq. (P1) is a Mixed-Integer Linear Program (MILP), which is hard
to solve optimally in real-time in realistic scenarios. If we assume that
|| = 1 (i.e., there is just one service) and the link capacities are
sufficiently large (i.e., 𝛼𝑖,𝑗 = ∞ ∀𝓁𝑖,𝑗), the solution for the formulated
problem can solve a Capacitated Facility Location Problem (CFLP). A
CFLP is the problem of opening a number of facilities with limited
capacity (edge servers) to serve the demand of all clients (BSs) at a
minimum cost (energy consumption). In this case, the CFLP problem
would involve

(i) determining the subset of edge servers to activate and
(ii) establishing which edge server will attend each request.

Since the CFLP is NP-hard [36], the solution to Problem (P1) is NP-
hard, which leads us to devise a lower-complexity algorithm, which we
present in the next section.

5. LESS-ON: Load-aware Edge Server ShutdOwN

This section presents our proposed operation flow and a lower
complexity heuristic to solve (P1). As illustrated in Fig. 1, the energy-
saving heuristic is hosted on the orchestrator, which is located at the
SMO layer, which also encloses the government of the RAN and the
transport network. This gives the orchestrator a global view of the net-
work, which it uses to gather demand information from the infrastruc-
ture. This information is used as input for the energy-saving heuristic,
which returns new resource allocation and routing configurations. The

orchestrator then applies this new configuration to the infrastructure. a

6
Algorithm 1: LESS-ON energy saving heuristic
Input: 𝜆, 𝑂

1 𝛾, 𝛽, 𝜂 ← Alg.2 (𝜆)
2 Sort according to 𝐸𝑖𝑑𝑙𝑒 in descending order
3 Sort according to 𝑇 𝑚𝑎𝑥 in ascending order
4 for each ℎ𝑗 in do
5 𝐸𝑜𝑛 ← 𝜂𝑗 (𝐸𝑖𝑑𝑙𝑒

𝑗 + 𝑂𝑗𝐸𝑗)
6 𝐸𝑜𝑓𝑓 ← 0
7 𝜂𝑗 ← 0
8 for each 𝑎𝑘 in do
9 for each 𝐵𝑆𝑖 in do
10 if 𝛾𝑖,𝑘,𝑗 > 0 then
11 𝑐𝑎𝑛 ← Servers reachable within 𝑇 𝑚𝑎𝑥 sorted by 𝜎𝑖,𝑚
12 for each ℎ𝑚 in 𝑐𝑎𝑛 do
13 if 𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑗𝑉 𝑖𝑛

𝑘 ≤ 𝛼𝑖,𝑚 then
14 if 𝛾𝑖,𝑘,𝑗𝑜𝑘𝜆𝑖,𝑘 < 𝐶𝑚𝑎𝑥

𝑚 − 𝑂𝑚 then
15 𝛾𝑖,𝑘,𝑚 ← 𝛾𝑖,𝑘,𝑚 + 𝛾𝑖,𝑘,𝑗
16 𝛾𝑖,𝑘,𝑗 ← 0
17 else
18 𝛾𝑖,𝑘,𝑚 ← 𝛾𝑖,𝑘,𝑚 + 𝐶𝑚𝑎𝑥

𝑚 −𝑂𝑚

𝜆𝑖,𝑘𝑜𝑘

19 𝛾𝑖,𝑘,𝑗 ← 𝛾𝑖,𝑘,𝑗 − 𝛾𝑖,𝑘,𝑚
20 𝛼𝑖,𝑚 ← 𝛼𝑖,𝑚 − 𝑉 𝑖𝑛

𝑘 𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑚
21 else
22 if 𝛾𝑖,𝑘,𝑗𝑜𝑘𝜆𝑖,𝑘 < 𝐶𝑚𝑎𝑥

𝑚 − 𝑂𝑚 then
23 𝛾𝑖,𝑘,𝑚 ← 𝛾𝑖,𝑘,𝑚 + 𝜆𝑖,𝑘𝑉 𝑖𝑛

𝑘 −𝛼𝑖,𝑗
𝛼𝑖,𝑗

24 𝛾𝑖,𝑘,𝑗 ← 𝛾𝑖,𝑘,𝑗 − 𝛾𝑖,𝑘,𝑚
25 𝛼𝑖,𝑚 ← 0
26 else
27 𝛾𝑖,𝑘,𝑚 ← 𝛾𝑖,𝑘,𝑚 + 𝛾𝑖,𝑘,𝑗
28 𝛾𝑖,𝑘,𝑗 ← 0
29 𝛼𝑖,𝑚 ← 𝛼𝑖,𝑚 − 𝑉 𝑖𝑛

𝑘 𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑚
30 𝐸𝑜𝑓𝑓 ← 𝐸𝑜𝑓𝑓 + 𝐸𝑜𝑓𝑓

𝑖,𝑘,𝑚

31 Update 𝑂𝑚 and 𝑂𝑗

32 if 𝐸𝑜𝑓𝑓 ≥ 𝐸𝑜𝑛 or ∑

𝐵𝑆𝑖∈
∑

𝑎𝑘∈
𝛾𝑖,𝑘,𝑗 ≠ 0 then

33 𝜂𝑗 ← 1
34 Undo changes
35 for each ℎ𝑚 in do
36 for each 𝑎𝑘 in do
37 𝛽𝑘,𝑗 ←

∑

𝐵𝑆𝑖∈
𝛾𝑖,𝑘,𝑗 𝑜𝑘𝜆𝑖,𝑘

𝑂𝑗

38 if any 𝑇 𝑢 + 𝑇 𝑟 + 𝑇 𝑐 + 𝑇 𝑜 + 𝑇 𝑑 ≤ 𝑇 𝑚𝑎𝑥 then
39 𝛾, 𝛽, 𝜂 ← Alg.3 (𝛾, 𝛽, 𝜂, 𝜆)
40 return 𝛾, 𝛽, 𝜂

5.1. Energy saving heuristic

LESS-ON’s heuristic, outlined in Alg. 1, is adapted from the DROP
greedy algorithm introduced in [37] for solving CFLP. By reducing the
problem to a CFLP, we gain access to a rich pool of well-studied and
efficient heuristics. In particular, the DROP-based heuristic provides
a good approximation to the optimal solution in polynomial time,
achieving a good trade-off between complexity and potential runtime
limitations and prioritizing a practical solution that achieves results
within a reasonable time frame. Alg. 1 begins with an initialization
step described in Alg. 2 to identify the initial values of 𝛾, 𝛽, and 𝜂.
Alg. 2 proceeds as follows. First, all edge servers are turned on (𝜂𝑖 =
1 ∀ℎ𝑖 ∈) and requests received at each 𝐵𝑆𝑖 are routed to the co-
located server ℎ𝑖 for the BSs that host one (𝑒𝑖 = 1). If the local server
does not have enough capacity (𝜆𝑖,𝑘𝑜𝑘 ≥ 𝐶𝑚𝑎𝑥

𝑖), the remaining requests
re routed to the closest 𝐵𝑆𝑗 with an edge server. Only a subset of
andidate servers denoted by 𝑐𝑎𝑛, consisting of the BSs reachable
ithin the delay constraint of 𝑎𝑘, is considered. If the closest server, ℎ𝑗 ,

annot accommodate all the requests from 𝐵𝑆𝑖, the algorithm routes
s many requests as possible to that server and then proceeds to the
econd-closest server in terms of delay. This process continues until
ll requests are served or all ℎ have been considered. If there is
𝑗

B. Gómez et al.

𝐸
s
d
I
A
(
t
s
b
w
c

𝜎

F
p
i
i
l
s
a
t
H
r
r

s
k
e
I
a
t

∑

(
u
u
a
t
i
d
a

e
o
l
i
s
s
t

5

s
n
o
c
t
n
s
c
o
𝑁
g
t
i
w
c

e

Computer Networks 252 (2024) 110675
Algorithm 2: Initialization algorithm
Input: 𝜆

1 𝜂𝑗 ← 1 for each ℎ𝑗 in
2 for each 𝐵𝑆𝑖 in do
3 for each 𝑎𝑘 in do
4 if 𝑒𝑖 is 1 then
5 if 𝜆𝑖,𝑘𝑜𝑘 ≤ 𝐶𝑚𝑎𝑥

𝑖 − 𝑂𝑖 then
6 𝛾𝑖,𝑘,𝑖 ← 1
7 Continue with the next iteration
8 else
9 𝛾𝑖,𝑘,𝑖 ←

𝐶𝑚𝑎𝑥
𝑖 −𝑂𝑖

𝜆𝑖,𝑘𝑜𝑘
10 𝑐𝑎𝑛 ← Servers reachable within 𝑇 𝑚𝑎𝑥 sorted by 𝑇 𝑟

𝑖,𝑘,𝑚

11 for each ℎ𝑗 in 𝑐𝑎𝑛 do
12 if 𝜆𝑖,𝑘𝑉 𝑖𝑛

𝑘 ≤ 𝛼𝑖,𝑚 then
13 if 𝑂𝑖,𝑘,𝑗 < 𝐶𝑚𝑎𝑥

𝑗 − 𝑂𝑗 then
14 𝛾𝑖,𝑘,𝑗 ← 1 −

∑

𝐵𝑆𝑗∈
𝛾𝑖,𝑘,𝑗

15 else
16 𝛾𝑖,𝑘,𝑖 ←

𝐶𝑚𝑎𝑥
𝑖 −𝑂𝑖

𝜆𝑖,𝑘𝑜𝑘
17 𝛼𝑖,𝑗 ← 𝛼𝑖,𝑗 − 𝜆𝑖,𝑘𝑉 𝑖𝑛

𝑘
18 else
19 𝛾𝑖,𝑘,𝑗 ←

𝜆𝑖,𝑘𝑉 𝑖𝑛
𝑘 −𝛼𝑖,𝑗
𝛼𝑖,𝑗

20 𝛼𝑖,𝑗 ← 0
21 𝜆𝑖,𝑘 ← (1 − 𝛾𝑖,𝑘,𝑗)𝜆𝑖,𝑘
22 Update 𝑂𝑗

23 for each ℎ𝑚 in do
24 for each 𝑎𝑘 in do
25 𝛽𝑘,𝑗 ←

∑

𝐵𝑆𝑖∈
𝛾𝑖,𝑘,𝑗 𝑜𝑘𝜆𝑖,𝑘

𝑂𝑗

26 return 𝛾, 𝛽, 𝜂

insufficient capacity to handle all the requests, the remaining ones are
rejected in a FIFO manner.

After initialization, Alg. 1 sorts the set of servers based on their
𝑖𝑑𝑙𝑒 to prioritize the shutdown of those with higher idle energy con-

umption. Similarly, the set of services is sorted according to their
elay budget (𝑇 𝑚𝑎𝑥) to prioritize those services with stricter deadlines.
t then assesses the feasibility of shutting down each server (line 4 in
lg. 1). When ℎ𝑗 is shut down, the requests of all 𝑎𝑘 received at any 𝐵𝑆𝑖

lines 8 and 9) that were previously served by ℎ𝑗 need to be rerouted
o other edge servers (i.e., 𝛾𝑖,𝑘,𝑗 > 0). The algorithm then identifies a
ubset 𝑐𝑎𝑛 of candidates to serve the requests previously being served
y ℎ𝑗 . 𝑐𝑎𝑛 includes all the edge servers that can be reached by 𝐵𝑆𝑖
ithin 𝑇 𝑚𝑎𝑥

𝑘 . 𝑐𝑎𝑛 is sorted based on the path with the lowest energy
onsumption indicated by 𝜎𝑖,𝑚, which is given by:

𝑖,𝑚 =
∑

𝑙𝑜,𝑝∈
𝜎𝑜,𝑝𝑝

𝑜,𝑝
𝑖,𝑚 ∀𝓁𝑜,𝑝 ∈ . (24)

or each candidate server ℎ𝑚 (line 12), Alg. 1 checks the free ca-
acity 𝛼𝑖,𝑚 of the path from 𝐵𝑆𝑖 to 𝐵𝑆𝑚 (line 13). The path’s capac-
ty 𝛼𝑖,𝑚 is given by the minimum capacity of all links on the path,
.e., min𝓁𝑜,𝑝 𝛼𝑜,𝑝 ∀𝓁𝑜,𝑝 where 𝑝𝑜,𝑝𝑖,𝑚 = 1. If there is enough capacity in the
ink, the algorithm checks the server’s capacity. The free capacity on the
erver is given by the difference between its maximum capacity 𝐶𝑚𝑎𝑥

𝑚
nd the capacity in use 𝑂𝑚 (line 14). If both the link and server capaci-
ies are sufficient, all requests initially routed to ℎ𝑗 are redirected to ℎ𝑚.
owever, if the capacities are insufficient, the algorithm routes as many

equests as possible to ℎ𝑚 and attempts to distribute the remaining
equests among the other eligible candidates in the next iterations.

The algorithm tracks the energy consumption 𝐸𝑜𝑓𝑓 resulting from
hutting down ℎ𝑗 and compares it with the energy resulting from
eeping it on (𝐸𝑜𝑛). In this way, the algorithm ensures that the backhaul
nergy does not rise above the energy saved by shutting down ℎ𝑗 .
f 𝐸𝑜𝑓𝑓 ≥ 𝐸𝑜𝑛, the server ℎ𝑗 is kept on, and the routing changes
re rejected (line 32). In addition, the heuristic checks whether all
he requests formerly attended to by ℎ are routed to other edge
𝑗 t

7
Algorithm 3: Delay violation handler algorithm
Input: 𝜂, 𝛾, 𝛽, 𝜆, 𝑀

1 𝑐 ← 0
2 while Server ℎ𝑣 with deadline violations found and 𝑐 < 𝑀 do
3 𝑎𝑘 ← Service causing the violation
4 𝐵𝑆𝑖 ← BS that receives the delayed requests
5 𝑐𝑎𝑛 ← Servers reachable within 𝑇 𝑚𝑎𝑥

6 Sort 𝑐𝑎𝑛 according to 𝐶𝑚𝑎𝑥 − 𝑂 in ascending order
7 ℎ𝑚 ← First server of 𝑐𝑎𝑛

8 if 𝑜𝑘𝜆𝑖,𝑘𝛾𝑖,𝑘,𝑚 ≥ 𝐶𝑚𝑎𝑥
𝑚 − 𝑂𝑚 then

9 ℎ𝑚 ← Closest inactive server to 𝐵𝑆𝑖
10 𝜂𝑚 ← 1
11 𝛾𝑖,𝑘,𝑚 ← 𝛾𝑖,𝑘,𝑣
12 𝛾𝑖,𝑘,𝑣 ← 0
13 𝑐 ← 𝑐 + 1
14 return 𝛾, 𝛽, 𝜂

servers (∑𝐵𝑆𝑖∈
∑

𝑎𝑘∈ 𝛾𝑖,𝑘,𝑗 = 0). If that is not the case, the changes
are also rejected to ensure enough servers are kept on to handle the
entire demand.

When the new routing has been calculated, the heuristic calculates
𝛽, i.e., it assigns resources to the services at each server. This is
done proportionally to the total workload of each server, as indicated
in (4). The resulting 𝛽𝑘,𝑗 values are normalized at server level so that

𝑎𝑘∈ 𝛽𝑘,𝑗 = 1 ∀ℎ𝑗 ∈ . Finally, the delay constraints are checked
line 38). If violations are found, the heuristic takes corrective action
sing Alg. 3, which redirects requests from the violating server to other
nderutilized ones. This helps alleviate the load on the offending server
nd reduces computing time, which is usually the biggest contributor
o the total latency. If this is not enough, the algorithm activates the
nactive server with the shortest routing delay to the BS receiving the
elayed requests. This process is repeated until all deadline violations
re resolved or all servers are turned on.

LESS-ON operates in a time-slotted manner. At the beginning of
ach time slot, 𝑡 ∈ {1, 2,… , 𝑇 }, the orchestrator executes the energy
ptimization heuristic (Alg. 1) using as input the maximum expected
oad in 𝑡, which we denote by 𝜆𝑡.6 In this way, the resource allocation
s periodically adapted to match network conditions. When a server is
hut down, it has to remain inactive for the time necessary to compen-
ate for the energy consumed during the booting process. Consequently,
he duration of 𝑡 is determined by the boot energy 𝐸𝑏𝑜𝑜𝑡.

.2. Complexity analysis

The time complexity of Alg. 1 depends on the number of edge
ervers in , which must be traversed twice (lines 4 and 12), the
umber of services in , which is iterated once (line 8), and the number
f BSs in , which is also traversed once (line 9). Thus, the time
omplexity of Alg. 1 is O(||

2×||×||). However, in realistic scenarios,
he number of edge servers and BSs is significantly bigger than the
umber of services (|| ≫ ||, || ≫ ||) and the number of edge
ervers is at most equal to the number of BSs (|| ⩾ ||). Hence, the
omplexity can be simplified as O(𝑁3), where 𝑁 represents the number
f BSs. The time complexity of Alg. 2 depends on the number of BSs,
, the number of services in A and the number of servers in H and is

iven by O(||× ||× ||) which can be simplified to O(𝑁2) following
he same reasoning for Alg. 1. Finally, for Alg. 3, to avoid infinite
terations when a solution that satisfies all deadlines cannot be found,
e implement a configurable limit of 𝑀 iterations. Therefore, its time

omplexity is O(1).

6 Load prediction models fall outside the scope of this work. We focus on
valuating the energy-saving potential of LESS-ON. Hence, for the purpose of
his study, we assume an ideal predictor.

B. Gómez et al. Computer Networks 252 (2024) 110675
Fig. 3. Map of the simulated scenario, showing the cities of Enschede and Hengelo in
the Netherlands, the location of the BSs of a real MNO, the known backhaul links in
green and the added ones in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2
Infrastructure parameters. Reference values from [39,40].

Servers Type 1 Type 2 Type 3

Max. Capacity (𝐶𝑚𝑎𝑥, ops/s) 22 151 384 11 260 532 33244766
Idle Consumption (𝐸𝑖𝑑𝑙𝑒) 415 W 222 W 541 W
Max. Consumption (𝐸𝑚𝑎𝑥) 1280 W 696 W 2336 W

Links

Link Capacity (𝛼) 10 Gbps
Link energy consumption (𝜎) 5.9 nJ/bit

5.3. Practical implementation challenges

In a 5G network that integrates an edge computing deployment,
the edge servers have a crucial role in routing user plane traffic.
Consequently, server shutdown, by default, would render communica-
tion impossible. However, in such deployments, the core network can
redirect user plane routing decisions to alternative edge servers [38].
Through control plane interactions with the 5G Core Network (CN),
the orchestrator can influence data plane decisions in the RAN. After
obtaining the new configuration from the heuristic, the orchestrator
shuts down specific edge servers accordingly. However, before the
shutdown, the data plane traffic needs to be reconfigured, and its
routing rules and functions migrated to the closest edge server (we
remind the reader that BSs are connected between them, and they can
access each other edge servers). The orchestrator is also responsible
for the new configuration of the routing of computing requests toward
other edge servers.

Note that another point to consider before shutting down an edge
server is the presence of computing tasks already in execution at an
edge server that is to be shut down. The server shutdown happens
when the server is actually idle, meaning that all computing tasks
have been completed. This could impact the actual value of the energy
consumption as the server remains on until all tasks have finished, but
as we consider computing requests that take fractions of a second to be
completed, this impact on the actual value of the energy consumption
is negligible.

6. Performance evaluation

We evaluate the performance of LESS-ON using MintEDGE [15],
our in-house Python simulator. By leveraging actual data from the
infrastructure of an MNO in the Netherlands, we evaluate the potential
8
of LESS-ON in comparison with two baselines via simulations, and we
address the following questions:

(i) How much energy does LESS-ON save compared with two base-
line methods, namely Always-on (where edge servers are con-
stantly active) and Threshold, where servers sleep when their
load is below a 10% threshold (set as the optimal value in [13])?

(ii) How does LESS-ON perform in meeting application deadlines,
and how does it compare with the other strategies?

(iii) How does the number of deployed edge servers and the utiliza-
tion levels impact the energy-saving capacity of LESS-ON and
the other two strategies for different application requirements?

(iv) How significant is the impact of the backhaul energy consump-
tion on total energy consumption?

6.1. Scenario and parameters

The evaluation is based on real data from an MNO’s infrastructure
in Enschede and Hengelo (The Netherlands) [45]. The infrastructure
consists of 50 BSs, located across the municipalities as shown in Fig. 3.
The BSs are connected via the X2 interface with 10 Gbps fiber optics
links using Cisco ASR9010 Routers, which consume 5.9 nJ/bit [40].
The wireless backhaul connectivity is partially obtained from [45],
shown in green in Fig. 3. To ensure connectivity for all BSs and also
represent fiber backhaul links, we introduce additional links shown in
red in Fig. 3. Since the MNO can choose not to deploy edge servers at all
BSs, we evaluate various server placements, ranging from 20% to 100%
of the BSs hosting an edge server, with increments of 20%. This allows
us to evaluate the behavior of LESS-ON and the two baselines with
different utilization levels in the computing infrastructure. In order to
decide which BSs host an edge server, we consider the physical location
of the BSs and their connectivity with other BSs. In particular, we define
two metrics: the degree centrality (𝑑𝑑), which takes into account the
number of connections to other BSs, and the location-based centrality
(𝑑𝑙), which considers the physical distance to the closest connected
neighbors. Because we are looking for a trade-off between them to place
servers at the BSs with more connections but at the same time spread
them across the geography, we finally calculate the global centrality
as 𝑑 = 𝑑𝑑∕𝑑𝑙. Then, the BSs with the biggest 𝑑 centrality are chosen
to host an edge server. We consider three types of servers: Type 1
represents an HP ProLiant DL560 Gen11 with an Intel Xeon Platinum
8490H at 1.90 GHz; Type 2 is an HP ProLiant DL380a Gen11 with an
Intel Xeon Platinum 8480+ at 2.0 GHz; and Type 3 is a Fujitsu Server
Primenergy CX2560 M7 with an Intel Xeon Gold 6428N at 1.8 GHz.
This selection aims to represent the heterogeneous nature of an edge
architecture by selecting three types of servers with different capacities
and energy efficiencies. Their energy consumption data is obtained
from [39], where the three edge server types’ full hardware and soft-
ware configuration can be found. All hardware-specific parameters are
summarized in Table 2. The energy per operation, 𝐸𝑚, can be obtained
from 𝐸𝑚𝑎𝑥 and 𝐸𝑖𝑑𝑙𝑒

𝑚 as 𝐸𝑚 = (𝐸𝑚𝑎𝑥
𝑚 −𝐸𝑖𝑑𝑙𝑒

𝑚)∕𝐶𝑚𝑎𝑥
𝑚 . In addition, we assume

a 𝑇 𝑠
𝑚 of 20 s and a time slot of 10 min. We also assume that during those

20 s, the booting power 𝑃 𝑠
𝑚 is the maximum consumption of the servers.

We evaluate a subset of three services with different latencies
and arrival rates from the service scenarios defined by ETSI [20] to
represent service diversity. The three selected services, listed in Table 3,
are: video analytics (referred to as SVA), augmented reality (referred
to as SAR), and connected vehicles (referred to as SCV). Request
arrival for all services follows a Poisson distribution with an expected
arrival rate 𝜆𝑘. The user count for each service depends on the area’s
population and the service’s market penetration. We have assumed a
1% market penetration for SAR, 10% for SCV, and 15 users (CCTV
cameras) per km2 for SVA. To represent service diversity and different
processing demands, each selected service has a different processing
density, i.e., they need different amounts of operations to process a
single data unit: SAR represents a high processing density service, SCV
is a low processing density service, and SVA falls in between.

B. Gómez et al.

Fig. 4. Accumulated total energy consumption, energy consumed by the servers, and energy consumed by the backhaul in kWh after the 24-hour period.

Fig. 5. Breakdown of the energy consumption over the 24-hour period for the scenarios with 60 and 80% of BSs with a co-located edge server. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Computer Networks 252 (2024) 110675

9

B. Gómez et al.

𝜎

v
t
s
i
b
i
s

6

6

L
d
e
h
e
L
A
F
t
a
w
s
e
c
i

Computer Networks 252 (2024) 110675
Table 3
Types of services studied[20,41–44].

Service type Examples of applications 𝑇 𝑚𝑎𝑥
𝑘 𝜆𝑘

(req/s)
𝑉 𝑖𝑛
𝑘 𝑉 𝑜𝑢𝑡

𝑘 𝑜𝑘
(ops)

Max.
users

Connected Vehicles (SCV) Hazard alert, traffic congestion, parking location 5 ms 10 1600 B 100 B 7000 4970
Augmented Reality (SAR) Show extra information on real-time camera footage 15 ms 0.5 1500 kB 25 kB 50 000 876
Video Analytics (SVA) Pattern recognition, CCTV 30 ms 6 1500 kB 20 B 30 000 3000
a
b
i
t

o
r
L
r
a
e
t
(
d
o
t
o
3
0
A
w
r
a
F
m
t
r
d

s

Fig. 6. Idle energy consumption for the three approaches with two different 𝜎𝑖,𝑗 values:
𝑖,𝑗 = 5.9 nJ and 𝜎𝑖,𝑗 = 5.9 μJ.

We simulate a 24-hour period in which the number of active users
aries from 2% to 16% of the maximum number of users following
he time-traffic distribution in [42]. After completing the 24-hour
imulation period, the user count cycle repeats itself, mirroring the typ-
cal weekly pattern. Consequently, extending the simulation duration
eyond 24 h would provide no additional insights. Users are generated
n a random geographical location and move randomly across the map
hown in Fig. 3.

We compare LESS-ON against two baselines:

(i) Always-On: In this case, all edge servers are active and requests
are routed in a greedy manner in the same way as Alg. 2 to the
local edge server or to the closest one for BSs without an edge
server. If the closest edge server cannot meet the demand of a
BS, it routes as many requests as possible to the closest and the
remaining to the second closest.

(ii) Threshold: This approach also starts placing services in a greedy
manner following Alg. 2. After that, it shuts down the servers
whose load is below 10%. Then, it routes the requests from the
servers that have been shut down to the closest server in the
same greedy manner.

.2. Results discussion

.2.1. Energy consumption
Let us first assess the energy consumption difference between

ESS-ON and the baselines with increasing fractions of edge servers
eployed in the network. Fig. 4 shows a breakdown of the accumulated
nergy consumption over 24 h. As expected, LESS-ON provides the
ighest benefit under denser edge server deployment scenarios. For
xample, when all BSs have an edge server (100% on the x-axis),
ESS-ON reduces the energy consumption by 60% (with respect to
lways-On) and by 39% (with respect to Threshold), as shown in
ig. 4(a). However, with only 20% of the BSs having an edge server,
he energy savings decrease to just 4% compared with the other two
pproaches, as 10 servers do not suffice to attend to all the demand
ithin the delay requirements, and there is not much potential for

erver shutdown. On average, LESS-ON achieves a 35% reduction in
nergy consumption compared with Always-On and a 23% reduction
ompared with Threshold. This reduction is mainly due to the reduction
n idle energy consumption, which accounts for 59% of the total energy,
10
s shown in Fig. 4(c). LESS-ON makes more intensive use of the
ackhaul links, increasing the backhaul energy consumption, as shown
n Fig. 4(d). However, since backhaul energy only represents 2% of the
otal energy, this increment is negligible.

Now, let us take a closer look at the change in energy consumption
ver a 24-hour period. For this analysis, we select the two most rep-
esentative deployments, as indicated by the request satisfaction ratio.
ooking at Figs. 7(d), 8(d) and 9(d), which show the ratio of unsatisfied
equests for all the deployments, we select the scenarios with 60%
nd 80% as the most appropriate deployments for the demand being
valuated. The behavior over time of the chosen deployments for
he three strategies is shown in Fig. 5. Let us focus on peak hours
highlighted in yellow) and off-peak hours (marked blue). In Fig. 5(a),
uring peak hours (from 19:00 to 00:00), LESS-ON achieves a reduction
f 31% with respect to Always-On and a reduction of 25% with respect
o Threshold when 60% of the BSs host an edge server. When 80%
f the BSs have an edge server, these reductions increase to 43% and
4%, respectively. Shifting our focus to off-peak hours (from 03:00 to
8:00), LESS-ON reduces energy consumption by 46% with respect to
lways-On and by 29% with respect to Threshold in the deployment
ith 60% of servers. In the deployment with 80% of servers, these

eductions become 54% and 19%, respectively. The energy savings
re primarily due to reduced idle energy consumption, as shown in
ig. 5(c). Threshold only reacts to servers with very low loads, which
akes its reduction more prominent during off-peak hours. In con-

rast, LESS-ON studies the possibility of shutting down every server
egardless of its load, which results in energy savings across the whole
ay. Moreover, LESS-ON shuts down the servers with the highest 𝐸𝑖𝑑𝑙𝑒

first. In this scenario, Type 3 servers have both the 𝐸𝑖𝑑𝑙𝑒 and the
highest consumption per operation 𝐸, contributing to a small decrease
in the workload energy consumption, as shown in Fig. 5(b). In contrast,
Fig. 5(d) shows increased backhaul energy consumption, mainly during
off-peak hours. In this period, with more servers inactive, the backhaul
links are utilized more intensively to route requests to active servers.

The deployments with 60% and 80% of BSs hosting an edge server
exhibit similar trends. The energy consumption in the denser deploy-
ment does not increase when using LESS-ON as it keeps the new
servers off, maintaining similar idle energy consumption. Always-On
has an increment equal to the idle consumption of the new servers, and
Threshold experiences this increment in consumption only during peak
hours while slightly reducing the energy consumption in comparison
with the 60% deployment in off-peak hours.

In scenarios with a more significant backhaul consumption, e.g., link
with a higher 𝜎, LESS-ON would strike a balance between server
shutdowns and backhaul utilization, as illustrated in Fig. 6, which
shows a comparison between the per bit consumption of the backhaul
links of the selected infrastructure (𝜎 = 5.9 nJ) and a bigger one (𝜎 =
5.9 𝜇J), selected to show the behavior of the algorithms in a scenario
with a high energy consumption backhaul. We focus on the first half
of the day to better show this behavior, as edge servers are shut down
during off-peak hours. With the new 𝜎, LESS-ON shuts down fewer edge
servers, as making more intensive use of the backhaul outweighs the
savings of shutting down edge servers. In this case, Threshold, which
does not look at the backhaul energy consumption, keeps shutting down
edge servers in the same way as it did with the original 𝜎, leading to
an increase of 29.61% in the total energy consumption with respect

to LESS-ON.

B. Gómez et al. Computer Networks 252 (2024) 110675
Fig. 7. Performance of the connected vehicles service with a delay budget of 5 ms: (a) average delay under increasing server density, (b) delay over time for the scenarios of 60%,
and (c) 80% of BSs having a co-located edge server, and (d) share of unsatisfied deadlines under increasing server density. Peak and off-peak hours are shown with yellow and
blue backgrounds, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
6.2.2. Delays and deadline satisfaction
Let us assess whether, and to what extent, LESS-ON degrades the

delay performance of the requests and consequently the satisfaction
ratio. We report the results for each service, namely SVA, SAR, and
SCV, in Figs. 7, 8 and 9, respectively.

In Figs. 7(a), 8(a), and 9(a), we observe that all schemes can
maintain an average delay below the respective delay budgets. We can
distinguish two behaviors, one where computing resources are scarce
and another where computing resources are correctly scaled or even
overprovisioned. The first case happens in the deployments with 20%
and 40% of BSs hosting an edge server. In both of them, LESS-ON’s Alg.
3 effectively handles deadline violations when computing resources
are saturated. LESS-ON redirects requests from the violating server to
other servers that can fulfill the constraints of the request. If it cannot
find any, it turns on a new server and redirects the requests there.
This allows these requests to have more computing resources available
for them, reducing the computing time, which tends to be the biggest
contributor to the total delay. Moreover, it reduces the load on the
server that caused the violation. In practice, the effect of this is a
reduction in the average delay for SCV and SAR, as shown in Figs. 7(a)
and 8(a). These two services are prioritized by the resource allocation
of LESS-ON as they have tighter delay constraints. In the case of SVA,
LESS-ON experiences a slight increase in average delay (Fig. 9(a)) as
a result of the order in which LESS-ON assigns resources to requests,
leaving the services with more flexible delay budgets for the end of the
assignation, giving SVA a lower priority. We can observe the second
of the two aforementioned behaviors in the deployments with 60%,
80%, and 100% of BSs hosting an edge server. In this case, LESS-ON
11
experiences a minor increase in average delay for all three services, not
only SVA, as shown in Figs. 7(a), 8(a) and 9(a). This is mainly due to
the inherent delay in the backhaul when reaching active servers and the
fact that it can carry out more shutdowns (since there are more idle
resources), increasing also computing time with respect to the other
two approaches. Figs. 7(b) and 7(c) illustrate this behavior, where the
delay with LESS-ON increases as more servers are shut down during
the off-peak hours (03:00 to 08:00, shown in blue). The Threshold
approach also shows a similar effect, albeit to a lesser extent due to
fewer server shutdowns. Despite this minor increase in average delay
in the chosen deployments (60% and 80% of BSs having an edge
server), LESS-ON prevents an increase in deadline violations, as shown
in Figs. 7(d), 8(d) and 9(d). In contrast, Always-On and Threshold,
which prioritize the nearest server without considering its load, lead to
a higher percentage of missed deadlines compared with LESS-ON. This
increase in the share of missed deadlines for Always-On and Threshold
is more pronounced in deployments with limited computing resources
(20% and 40% of BSs having an edge server), as shown in Figs. 7(d) and
8(d) for the SCV and SAR services, respectively. Threshold faces signif-
icant challenges in meeting the tight delay budget of SAR, resulting in
a high number of missed deadlines across all deployments, as shown
in Fig. 8(d). While the performance of Always-On initially improves
as more servers are deployed, Threshold experiences an increase in
missed deadlines for deployments with 80% and 100% of servers. As
the number of deployed servers increases, the load is naturally spread
across more servers, leaving more servers below the 10% threshold.
Threshold then routes the requests to the closest server, regardless of
its load, resulting in a higher share of unsatisfied deadlines. As shown

B. Gómez et al. Computer Networks 252 (2024) 110675
Fig. 8. Performance of the augmented reality service with a delay budget of 15 ms: (a) average delay under increasing server density, (b) delay over time for the scenarios of
60%, and (c) 80% of BSs having a co-located edge server, and (d) share of unsatisfied deadlines under increasing server density. Peak and off-peak hours are shown with yellow
and blue backgrounds, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in Fig. 9(d), LESS-ON causes an increase in the number of unsatisfied
deadlines for SVA. This is a result of the order in which LESS-ON assigns
resources, prioritizing the services with the shortest deadline. However,
on average, LESS-ON achieves a 95% reduction in unsatisfied deadlines.

6.2.3. Heuristic performance
We use Gurobi [46] optimization library for Python to find the

solution to (P1). Table 4 lists the execution times for different problem
sizes. The elevated execution times required to obtain the solution using
Gurobi, which increase exponentially with the size of the network,
confirm that solving this problem optimally for real-time decision-
making is impractical in realistic scenarios. In all the scenarios where
an optimal solution could be obtained within 48 h, the result for
(P1) obtained by LESS-ON’s heuristic is only 0.04% over the optimal
solution given by Gurobi. Given this small difference, the energy used
to obtain the optimal solution using Gurobi outweighs the minimal
savings achieved compared to the heuristic approach. The average
execution time of the heuristic is only 1 s, showing its efficiency.
Notably, all the execution times of the heuristic are within a realistic
slot duration 𝑡.

7. Conclusions

In this work, we have introduced LESS-ON, an energy-saving ap-
proach with polynomial time complexity for edge computing infras-

tructures that strategically shuts down idle edge servers during periods

12
Table 4
Performance of LESS-ON’s heuristic against the optimal solution obtained by Gurobi
within a 48-hour limit with different network sizes and 3 offered services (|| = 3).

BSs Solution Time (s) Power (W)

10 Gurobi 3.043 3341.26
LESS-ON 0.046 3342.85

15 Gurobi 37.152 4939.47
LESS-ON 0.161 4941.20

20 Gurobi 936.140 6527.89
LESS-ON 0.541 6530.21

25 Gurobi 51 891.282 8067.25
LESS-ON 1.417 8071.20

30 Gurobi – –
LESS-ON 2.947 9614.24

of low demand, effectively reducing the energy consumption of the
infrastructure while meeting the delay requirements of the applications.
By striking a balance between the energy consumed by idle servers
and the energy used for backhaul routing, LESS-ON achieves significant
energy savings of 35% compared with the commonly implemented
always-on approach and 23% with respect to a threshold-based ap-
proach while keeping delays within the application’s requirements and
reducing the share of delay violations. LESS-ON offers a sustainable and
cost-effective solution for the efficient deployment of edge computing

B. Gómez et al.

a
b

s
p
f
c
w
e

C

V
t
n
t
R
J
F
R

D

c
i

Computer Networks 252 (2024) 110675
Fig. 9. Performance of the video analytics service with a delay budget of 30 ms: (a) average delay under increasing server density, (b) delay over time for the scenarios of 60%,
nd (c) 80% of BSs having a co-located edge server, and (d) share of unsatisfied deadlines under increasing server density. Peak and off-peak hours are shown with yellow and
lue backgrounds, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ervices. Future work will focus on investigating the use of workload
rediction models to enable proactive changes to server states and
urther improve energy efficiency, and the study of the impact of inac-
urate predictions on QoS levels and energy consumption. Moreover,
e plan to investigate the influence of different boot-up times on
nergy consumption.

RediT authorship contribution statement

Blas Gómez: Writing – review & editing, Writing – original draft,
isualization, Software, Methodology, Formal analysis, Conceptualiza-

ion. Suzan Bayhan: Writing – review & editing, Writing – origi-
al draft, Supervision, Methodology, Formal analysis, Conceptualiza-
ion. Estefanía Coronado: Writing – review & editing, Supervision,
esources, Funding acquisition, Formal analysis, Conceptualization.
osé Villalón: Writing – review & editing, Supervision, Resources,
unding acquisition, Conceptualization. Antonio Garrido: Supervision,
esources, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
13
Data availability

All data generated or analyzed during this study are included in this
article.

Acknowledgments

Grants PID2022-142332OA-I00 and PID2021-123627OB-C52 funded
by MICIU/AEI/10.13039/501100011033 and the EU, ERDF. This work
is also funded by the European Social Fund and UCLM under grant
2019-PREDUCLM-10921, the Government of Castilla-La Mancha un-
der project SBPLY/21/180501/000195 and Universidad de Castilla-
La Mancha under project 2023-GRIN-34056. This work is also sup-
ported by the EU ‘‘NextGenerationEU/PRTR’’, MCIN, and AEI under
project IJC2020-043058-I and the EU’s H2020 XGain project (GA No
101060294). The authors from UT acknowledge the support of the
Faculty of EEMCS under the research grant EERI: Energy-Efficient
and Resilient Internet. Blas Gómez thanks UCLM’s Vice-rectorate of
Science Policy for the mobility grant.

References

[1] S. Redana, O. Bulakci, C. Mannweiler, L. Gallo, A. Kousaridas, D. Navrátil,
A. Tzanakaki, J. Gutiérrez, H. Karl, P. Hasselmeyer, A. Gavras, S. Parker, E.
Mutafungwa, 5G PPP Architecture Working Group - View on 5G architecture,
2019, Version 3.0.

http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb1

B. Gómez et al. Computer Networks 252 (2024) 110675
[2] B. Ramprasad, A. da Silva Veith, M. Gabel, E. de Lara, Sustainable computing
on the edge: A system dynamics perspective, in: Proc. of ACM HotMobile, 2021,
http://dx.doi.org/10.1145/3446382.3448607.

[3] P. Wiesner, I. Behnke, D. Scheinert, K. Gontarska, L. Thamsen, Let’s wait awhile:
how temporal workload shifting can reduce carbon emissions in the cloud, in:
Proc. of ACM Middleware Conference, Québec, Canada, 2021, http://dx.doi.org/
10.1145/3464298.3493399.

[4] Z. Cao, X. Zhou, H. Hu, Z. Wang, Y. Wen, Toward a Systematic Survey for
Carbon Neutral Data Centers, IEEE Commun. Surv. Tuts. 24 (2) (2022) 895–936,
http://dx.doi.org/10.1109/COMST.2022.3161275.

[5] R. Jacob, L. Vanbever, The internet of tomorrow must sleep more and grow old,
in: Proc. of HotCarbon, 2022.

[6] U. Wajid, C. Cappiello, P. Plebani, B. Pernici, N. Mehandjiev, M. Vitali, M.
Gienger, K. Kavoussanakis, D. Margery, D.G. Perez, P. Sampaio, On Achieving
Energy Efficiency and Reducing CO2 Footprint in Cloud Computing, IEEE Trans.
Cloud Comput. 4 (2) (2016) 138–151, http://dx.doi.org/10.1109/TCC.2015.
2453988.

[7] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, A.V. Vasilakos,
Cloud Computing: Survey on Energy Efficiency, ACM Comput. Surv. 47 (2)
(2014) 1–36, http://dx.doi.org/10.1145/2656204.

[8] I. Raïs, A.-C. Orgerie, M. Quinson, Impact of Shutdown Techniques for Energy-
Efficient Cloud Data centers, in: J. Carretero, J. Garcia-Blas, R.K. Ko, P. Mueller,
K. Nakano (Eds.), Proc. Springer ICA3PP, Vol. 10048, Granada, Spain, 2016,
http://dx.doi.org/10.1007/978-3-319-49583-5_15.

[9] R. Buyya, A. Beloglazov, J. Abawajy, Energy-Efficient Management of Data
Center Resources for Cloud Computing: A Vision, Architectural Elements, and
Open challenges, in: Proc. of PDPTA, Las Vegas, USA, 2010.

[10] Y.C. Lee, A.Y. Zomaya, Energy efficient utilization of resources in cloud com-
puting systems, J. Supercomput. 60 (2) (2012) 268–280, http://dx.doi.org/10.
1007/s11227-010-0421-3.

[11] D. Meisner, B.T. Gold, T.F. Wenisch, PowerNap: Eliminating Server Idle power,
in: Proc. of ACM ASPLOS, Washington, DC, USA, 2009, http://dx.doi.org/10.
1145/2528521.1508269.

[12] ETSI, MEC 003 - V2.2.1 - Multi-Access Edge Computing (MEC); Framework and
Reference Architecture, vol. 1, 2020, pp. 1–21.

[13] S. Wang, X. Zhang, Z. Yan, W. Wenbo, Cooperative Edge Computing With Sleep
Control Under Nonuniform Traffic in Mobile Edge Networks, IEEE Internet of
Things J. (3) (2019) 4295–4306, http://dx.doi.org/10.1109/JIOT.2018.2875939.

[14] B. Wu, J. Zeng, S. Shao, W. Ni, Y. Tang, New Game-Theoretic Approach to
Decentralized Path Selection and Sleep Scheduling for Mobile Edge Computing,
IEEE Trans. Wirel. Commun. 21 (8) (2022) 6125–6140, http://dx.doi.org/10.
1109/TWC.2022.3146514.

[15] B. Gómez, S. Bayhan, E. Coronado, J. Villalón, A. Garrido, MintEDGE: Multi-
tier simulator for energy-aware strategies in edge computing, in: Proc. of the
ACM Annual International Conference on Mobile Computing and Networking,
MobiCom, Madrid, Spain, 2023, http://dx.doi.org/10.1145/3570361.3615727.

[16] Z. Ali, S. Khaf, Z.H. Abbas, G. Abbas, F. Muhammad, S. Kim, A Deep Learning
Approach for Mobility-Aware and Energy-Efficient Resource Allocation in MEC,
IEEE Access 8 (2020) 179530–179546, http://dx.doi.org/10.1109/ACCESS.2020.
3028240.

[17] T. Dlamini, A.F. Gambín, Adaptive Resource Management for a Virtualized
Computing Platform within Edge computing, in: Proc. of IEEE SECON, 2019,
http://dx.doi.org/10.1109/SAHCN.2019.8824927.

[18] M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah, R. Khan, O. Rana, R. Buyya,
epcAware: A Game-based, Energy, Performance and Cost Efficient Resource
Management Technique for Multi-access Edge Computing, IEEE Trans. Serv.
Comput. (2020) http://dx.doi.org/10.1109/TSC.2020.3005347.

[19] J. Ahn, J. Lee, S. Park, H.-S. Park, Power Efficient Clustering Scheme for 5G
Mobile Edge Computing Environment, Mob. Netw. Appl. 24 (2) (2019) 643–652,
http://dx.doi.org/10.1007/s11036-018-1164-2.

[20] ETSI, ETSI GS MEC-IEG 004 V1.1.1 (2015-11) - Mobile-edge computing (MEC);
service scenarios, 2015.

[21] A.A. Amer, I.E. Talkhan, T. Ismail, Optimal Power Consumption on Distributed
Edge Services Under Non-Uniform Traffic with Dual Threshold Sleep/Active
control, in: Proc. of IEEE NILES, Giza, Egypt, 2021, http://dx.doi.org/10.1109/
NILES53778.2021.9600496.

[22] C.N.L. Tan, C. Klein, E. Elmroth, Location-aware load prediction in Edge Data
Centers, in: Proc. of IEEE FMEC, Valencia, Spain, 2017, http://dx.doi.org/10.
1109/FMEC.2017.7946403.

[23] F. Han, S. Zhao, L. Zhang, J. Wu, Survey of Strategies for Switching Off Base
Stations in Heterogeneous Networks for Greener 5G Systems, IEEE Access 4
(2016) 4959–4973, http://dx.doi.org/10.1109/ACCESS.2016.2598813.

[24] H. Cheng, B. Liu, W. Lin, Z. Ma, K. Li, C.-H. Hsu, A survey of energy-
saving technologies in cloud data centers, J. Supercomput. 77 (11) (2021)
13385–13420, http://dx.doi.org/10.1007/s11227-021-03805-5.

[25] H. Fourati, R. Maaloul, L. Fourati, M. Jmaiel, An Efficient Energy-Saving Scheme
Using Genetic Algorithm for 5G Heterogeneous Networks, IEEE Syst. J. 17 (1)
(2023) 589–600, http://dx.doi.org/10.1109/JSYST.2022.3166228.

[26] M.J. Daas, M. Jubran, M. Hussein, Energy Management Framework for 5G Ultra-
Dense Networks Using Graph Theory, IEEE Access 7 (2019) 175313–175323,
http://dx.doi.org/10.1109/ACCESS.2019.2957378.
14
[27] H. Pervaiz, O. Onireti, A. Mohamed, M. Ali Imran, R. Tafazolli, Q. Ni,
Energy-Efficient and Load-Proportional eNodeB for 5G User-Centric Networks:
A Multilevel Sleep Strategy Mechanism, IEEE Veh. Technol. Mag. 13 (4) (2018)
51–59, http://dx.doi.org/10.1109/MVT.2018.2871740.

[28] H. Çelebi, Y. Yapıcı, I. Güvenç, H. Schulzrinne, Load-Based On/Off Scheduling
for Energy-Efficient Delay-Tolerant 5G Networks, IEEE Trans. Green Commun.
Netw. 3 (4) (2019) 955–970, http://dx.doi.org/10.1109/TGCN.2019.2931700.

[29] L. Mao, R. Chen, H. Cheng, W. Lin, B. Liu, J.Z. Wang, A resource scheduling
method for cloud data centers based on thermal management, J. Cloud Comput.
12 (1) (2023) 84, http://dx.doi.org/10.1186/s13677-023-00462-2.

[30] C.-C. Lin, P. Liu, J.-J. Wu, Energy-aware virtual machine dynamic provision and
scheduling for cloud computing, in: 2011 IEEE 4th International Conference on
Cloud Computing, 2011, pp. 736–737, http://dx.doi.org/10.1109/CLOUD.2011.
94.

[31] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R.P. Liu, Energy-efficient admission
of delay-sensitive tasks for mobile edge computing, IEEE Trans. Commun. 66 (6)
(2018) 2603–2616, http://dx.doi.org/10.1109/TCOMM.2018.2799937.

[32] J. Yan, S. Bi, Y.J. Zhang, M. Tao, Optimal task offloading and resource
allocation in mobile-edge computing with inter-user task dependency, IEEE
Trans. Wirel. Commun. 19 (1) (2019) 235–250, http://dx.doi.org/10.1109/TWC.
2019.2943563.

[33] P. Wang, Z. Zheng, B. Di, L. Song, HetMEC: latency-optimal task assignment and
resource allocation for heterogeneous multi-layer mobile edge computing, IEEE
Trans. Wirel. Commun. 18 (10) (2019) 4942–4956, http://dx.doi.org/10.1109/
TWC.2019.2931315.

[34] P. Wiesner, L. Thamsen, LEAF: Simulating large energy-aware fog computing
environments, in: Proc. of IEEE ICFEC, Melbourne, Australia, 2021, http://dx.
doi.org/10.1109/ICFEC51620.2021.00012.

[35] A. Gandhi, M. Harchol-Balter, I. Adan, Server farms with setup costs, Perform.
Eval. 67 (11) (2010) 1123–1138, http://dx.doi.org/10.1016/j.peva.2010.07.004.

[36] J. Krarup, P.M. Pruzan, Selected Families of Discrete Location Problems: Part III,
the Plant Location Family, Research Library, Faculty of Business, University of
Calgary, 1977.

[37] S.K. Jacobsen, Heuristics for the capacitated plant location model, European
J. Oper. Res. 12 (3) (1983) 253–261, http://dx.doi.org/10.1016/0377-2217(83)
90195-9.

[38] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin, et al., MEC in 5G networks, ETSI White
Paper 28 (2018) 1–28.

[39] Standard Performance Evaluation Corporation, SPECpower results, URL https:
//www.spec.org/power_ssj2008/results/.

[40] Cisco power calculator, 2023, URL http://www.cisco.com/c/en/us/applicat/
camp/CiscoPowerCalculator_Layout.html. (Accessed 25 June 2023).

[41] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J.J. Ramos-Munoz,
J.M. Lopez-Soler, A Survey on 5G Usage Scenarios and Traffic Models, IEEE
Commun. Surv. Tuts. 22 (2) (2020) 905–929, http://dx.doi.org/10.1109/COMST.
2020.2971781.

[42] METIS-II mobile and wireless communications enablers for twenty–twenty in-
formation society II: Deliverable D2.3 performance evaluation results, 2020,
URL https://metis-ii.5g-ppp.eu/wp-content/uploads/deliverables/METIS-II_D2.3_
V1.0.pdf. (Accessed 05 June 2024).

[43] C. Sonmez, A. Ozgovde, C. Ersoy, Fuzzy Workload Orchestration for Edge
Computing, IEEE Trans. Netw. Serv. Manag. 16 (2) (2019) 769–782, http:
//dx.doi.org/10.1109/TNSM.2019.2901346.

[44] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, Q. Li, LAVEA: latency-aware video
analytics on edge computing platform, in: Proc. of ACM/IEEE SEC, New York,
NY, USA, 2017, http://dx.doi.org/10.1145/3132211.3134459.

[45] Antennekaart, 2023, https://antennekaart.nl. (Accessed 15 April 2023).

[46] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2023, URL https:
//www.gurobi.com.

Blas Gómez is a Ph.D. student at Universidad de Castilla-
La Mancha since 2020. In 2019, he completed his M.Sc. in
Computer and Networks Engineering from the Polytechnical
University of Valencia and his B.Sc. in Computer Science in
2018 from Universidad de Castilla-La Mancha. His current
research interests include the delivery of multimedia content
over SDWLANs, wireless communications, MEC systems, and
AI-driven network management.

http://dx.doi.org/10.1145/3446382.3448607
http://dx.doi.org/10.1145/3464298.3493399
http://dx.doi.org/10.1145/3464298.3493399
http://dx.doi.org/10.1145/3464298.3493399
http://dx.doi.org/10.1109/COMST.2022.3161275
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb5
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb5
http://dx.doi.org/10.1109/TCC.2015.2453988
http://dx.doi.org/10.1109/TCC.2015.2453988
http://dx.doi.org/10.1109/TCC.2015.2453988
http://dx.doi.org/10.1145/2656204
http://dx.doi.org/10.1007/978-3-319-49583-5_15
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb9
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb9
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1145/2528521.1508269
http://dx.doi.org/10.1145/2528521.1508269
http://dx.doi.org/10.1145/2528521.1508269
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb12
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb12
http://dx.doi.org/10.1109/JIOT.2018.2875939
http://dx.doi.org/10.1109/TWC.2022.3146514
http://dx.doi.org/10.1109/TWC.2022.3146514
http://dx.doi.org/10.1109/TWC.2022.3146514
http://dx.doi.org/10.1145/3570361.3615727
http://dx.doi.org/10.1109/ACCESS.2020.3028240
http://dx.doi.org/10.1109/ACCESS.2020.3028240
http://dx.doi.org/10.1109/ACCESS.2020.3028240
http://dx.doi.org/10.1109/SAHCN.2019.8824927
http://dx.doi.org/10.1109/TSC.2020.3005347
http://dx.doi.org/10.1007/s11036-018-1164-2
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb20
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb20
http://dx.doi.org/10.1109/NILES53778.2021.9600496
http://dx.doi.org/10.1109/NILES53778.2021.9600496
http://dx.doi.org/10.1109/NILES53778.2021.9600496
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/FMEC.2017.7946403
http://dx.doi.org/10.1109/ACCESS.2016.2598813
http://dx.doi.org/10.1007/s11227-021-03805-5
http://dx.doi.org/10.1109/JSYST.2022.3166228
http://dx.doi.org/10.1109/ACCESS.2019.2957378
http://dx.doi.org/10.1109/MVT.2018.2871740
http://dx.doi.org/10.1109/TGCN.2019.2931700
http://dx.doi.org/10.1186/s13677-023-00462-2
http://dx.doi.org/10.1109/CLOUD.2011.94
http://dx.doi.org/10.1109/CLOUD.2011.94
http://dx.doi.org/10.1109/CLOUD.2011.94
http://dx.doi.org/10.1109/TCOMM.2018.2799937
http://dx.doi.org/10.1109/TWC.2019.2943563
http://dx.doi.org/10.1109/TWC.2019.2943563
http://dx.doi.org/10.1109/TWC.2019.2943563
http://dx.doi.org/10.1109/TWC.2019.2931315
http://dx.doi.org/10.1109/TWC.2019.2931315
http://dx.doi.org/10.1109/TWC.2019.2931315
http://dx.doi.org/10.1109/ICFEC51620.2021.00012
http://dx.doi.org/10.1109/ICFEC51620.2021.00012
http://dx.doi.org/10.1109/ICFEC51620.2021.00012
http://dx.doi.org/10.1016/j.peva.2010.07.004
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb36
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb36
http://dx.doi.org/10.1016/0377-2217(83)90195-9
http://dx.doi.org/10.1016/0377-2217(83)90195-9
http://dx.doi.org/10.1016/0377-2217(83)90195-9
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb38
http://refhub.elsevier.com/S1389-1286(24)00507-3/sb38
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
http://www.cisco.com/c/en/us/applicat/camp/CiscoPowerCalculator_Layout.html
http://www.cisco.com/c/en/us/applicat/camp/CiscoPowerCalculator_Layout.html
http://www.cisco.com/c/en/us/applicat/camp/CiscoPowerCalculator_Layout.html
http://dx.doi.org/10.1109/COMST.2020.2971781
http://dx.doi.org/10.1109/COMST.2020.2971781
http://dx.doi.org/10.1109/COMST.2020.2971781
https://metis-ii.5g-ppp.eu/wp-content/uploads/deliverables/METIS-II_D2.3_V1.0.pdf
https://metis-ii.5g-ppp.eu/wp-content/uploads/deliverables/METIS-II_D2.3_V1.0.pdf
https://metis-ii.5g-ppp.eu/wp-content/uploads/deliverables/METIS-II_D2.3_V1.0.pdf
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.1145/3132211.3134459
https://antennekaart.nl
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

B. Gómez et al. Computer Networks 252 (2024) 110675
Suzan Bayhan is an associate professor at the Univer-
sity of Twente. Previously, she was a senior researcher
at TU Berlin, and a postdoctoral researcher at the Uni-
versity of Helsinki, where she is currently a docent in
computer science. Suzan received her Ph.D. in computer
engineering from Bogazici University in 2012. Her current
research interests include resource management and con-
tinuum orchestration for sustainable and resilient 5G/6G
networks.

Estefanía Coronado is a Senior Researcher at Fundació
i2CAT (Spain) and a Juan de la Cierva Senior Researcher at
the University of Castilla-La Mancha (Spain). From 2018 to
2020 she was an Expert Researcher at Fondazione Bruno
Kessler (Italy). In 2018, she completed her Ph.D. at the
University of Castilla-La Mancha (Spain) on multimedia
ML-driven distribution over SD-WLANs. She has worked
in several H2020 projects, acted as technical task leader,
and as PI of a national project. She has published around
50 papers in international journals and conferences. Her
current research interests include wireless communications,
MEC systems, and AI-driven network management.
15
José Miguel Villalón is currently an Associate Ph.D.
Professor at UCLM. He received an M.Sc. degree in
Computer Science and a Ph.D. in Computer Engineer-
ing from the University of Castilla-La Mancha, Spain, in
2003 and 2007, respectively. He has been a Visiting Re-
searcher at INRIA, France. His research interests include
high-performance networks, wireless networks, QoS and
QoE over IEEE 802.11 and WiMAX, multicast transmis-
sion, software-defined networking, video distribution, edge
computing and error-resilient protocol architectures.

Antonio Garrido received the Ph.D. degree from the Uni-
versity of Valencia, Spain, in 1991. In 1986, he joined
the Computer Systema Department at the University of
Castilla-La Mancha, where he is currently a Full Professor of
Computer Architecture and Technology. His research inter-
ests include wireless sensor networks, video compression,
and video transmission. From the year 2000, collaborates
with the National Agency for Quality Assessment and Ac-
creditation of Spain and several regional quality agencies
in Spain.

	LESS-ON: Load-aware edge server shutdown for energy saving in cellular networks
	Introduction
	Related Work
	System Model
	Problem Formulation
	Energy Consumption Model
	Orchestration for Energy Consumption Minimization

	LESS-ON: Load-aware Edge Server ShutdOwN
	Energy Saving Heuristic
	Complexity analysis
	Practical Implementation Challenges

	Performance Evaluation
	Scenario and Parameters
	Results Discussion
	Energy Consumption
	Delays and deadline satisfaction
	Heuristic Performance

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

